Grants Funded
Grant applicants for the 2024 cycle requested a total of nearly $3 million dollars. The PSF Study Section Subcommittees of Basic & Translational Research and Clinical Research evaluated more than 100 grant applications on the following topics:
The PSF awarded research grants totaling over $650,000 dollars to support more than 20 plastic surgery research proposals.
ASPS/PSF leadership is committed to continuing to provide high levels of investigator-initiated research support to ensure that plastic surgeons have the needed research resources to be pioneers and innovators in advancing the practice of medicine.
Research Abstracts
Search The PSF database to have easy access to full-text grant abstracts from past PSF-funded research projects 2003 to present. All abstracts are the work of the Principal Investigators and were retrieved from their PSF grant applications. Several different filters may be applied to locate abstracts specific to a particular focus area or PSF funding mechanism.
Enhancement of Nerve Regeneration Following Neonatal Nerve Injury
Joseph Catapano MD, PhD, FRCSC
2014
The Hospital for Sick Children
Pilot Research Grant
Hand or Upper Extremity
In Obsterical Brachial Plexus Palsy, nerves are stretched and sometimes ruptured during delivery leaving more than 25% of infants with permanent paralysis, numbness, or chronic pain for the duration of their lives. An overlooked component of disability following neonatal nerve injury is the death of central motor and sensory neurons crucial for repair and regeneration. Rat models have shown that over 70% of motor neurons and 60% of sensory neurons die following neonatal nerve injury. Similar findings have been observed in higher mammals, including monkeys, and even a human case. Axons are incapable of regenerating without neuronal guidance, and improving neuronal survival may increase axonal regeneration and recovery. Presently, acute management of neonatal nerve injury is exclusively surgical. Pharmacologic protection against neuronal cell death would represent a major paradigm shift.
Studies in our laboratory have demonstrated that P7C3 protects neurons following peripheral nerve injury and increasing neuron survival improves functional recovery. However, the mechanism of P7C3 remains unknown and it is not yet approved for clinical use. The anti-oxidants N-acetyl cysteine (NAC) and acetyl-L-carnitine (ALC) have a long history of safe clinical use and have demonstrated neuronal protection in adult models of nerve injury. NAC and ALC have not been investigated in neonatal peripheral nerve injuries where neuron death is most profound. NAC and ALC, if shown to be effective, are more realistic candidates for clinical translation because of their documented history of safety in pediatric populations. This proposed pilot research grant will begin investigation into how NAC and ALC effect neuron survival, regeneration, and recovery after neonatal nerve injury. If positive, this research will provide a novel mechanism for protecting the nervous system after peripheral nerve injury, which could realistically be translated to a clinical setting to greatly improve patient outcomes in conjunction with conventional surgical methods.
