Grants Funded
Grant applicants for the 2024 cycle requested a total of nearly $3 million dollars. The PSF Study Section Subcommittees of Basic & Translational Research and Clinical Research evaluated more than 100 grant applications on the following topics:
The PSF awarded research grants totaling over $650,000 dollars to support more than 20 plastic surgery research proposals.
ASPS/PSF leadership is committed to continuing to provide high levels of investigator-initiated research support to ensure that plastic surgeons have the needed research resources to be pioneers and innovators in advancing the practice of medicine.
Research Abstracts
Search The PSF database to have easy access to full-text grant abstracts from past PSF-funded research projects 2003 to present. All abstracts are the work of the Principal Investigators and were retrieved from their PSF grant applications. Several different filters may be applied to locate abstracts specific to a particular focus area or PSF funding mechanism.
Autologous Adipose Tissue Supplementation, Potentiating Nerve Fiber Regeneration
Stephen Kemp PhD
2016
University of Michigan
ASPN/PSF Research Grant
Peripheral Nerve, Fat Grafting
Annually, 360,000 Americans suffer from upper extremity paralytic syndromes. Nerve autografts are the clinical gold standard for reconstruction of nerve gaps but have several intrinsic disadvantages, including donor site morbidity, scarring, dysesthesias, sensory loss, and possible development of painful neuroma. In addition, in all cases of nerve gap repair, functional recovery remains incomplete largely due to the lack of robust nerve fiber regeneration across the nerve graft, leading to impaired quality of life.
Research efforts have focused on guiding nerve regeneration using various conduits, but reports on successful regeneration through long nerve conduits are inconclusive. Several studies have demonstrated the regenerative effects of adipose-derived tissues when used in combination with nerve conduits. The effects of adipose tissue on neural regeneration as an adjunct to the clinical gold standard nerve autograft have never been studied. Most studies that have examined the effects of adipose tissue on neural regeneration use processed adipose tissue concentrates of adipose-derived stem cells (ASC) due to the potential neurotrophic and angiogenic benefit of ASCs toward nerve repair. This processing creates regulatory and scaling burdens that limit clinical utility. Clinically translatable studies are proposed that will explore supplementing nerve autografts with minimally processed adipose-derived tissue for long-length peripheral nerve gap repair with the goal of providing enhanced functional recovery.
This proposal will determine if nerve gap regeneration is potentiated by supplementing nerve autografts with autologous a) whole adipose tissue (unpurified fat) or b) purified uncultured, undifferentiated ASCs (uuASCs). Aim 1 will determine the concentration of ASCs in unpurified fat and purified uuASCs. Aim 2 will supplement nerve autografts with either autologous unpurified fat or autologous uuASCs along the length of a nerve autograft. Aim 3 will involve histomorphometric analysis of the nerve and innervated muscle. Rats will be randomly assigned to one of four groups (n=6 rats/group): 1) no peroneal nerve injury; and 3 groups treated with 30-mm nerve autograft 2) plus saline injection, 3) plus autologous unpurified fat, and 4) plus purified uuASCs. Five months postoperatively, effects of adipose supplementation are measured with electromyography, nerve conduction studies, reinnervated muscle force and endurance, and histomorphometry.
