Grants Funded
Grant applicants for the 2024 cycle requested a total of nearly $3 million dollars. The PSF Study Section Subcommittees of Basic & Translational Research and Clinical Research evaluated more than 100 grant applications on the following topics:
The PSF awarded research grants totaling over $650,000 dollars to support more than 20 plastic surgery research proposals.
ASPS/PSF leadership is committed to continuing to provide high levels of investigator-initiated research support to ensure that plastic surgeons have the needed research resources to be pioneers and innovators in advancing the practice of medicine.
Research Abstracts
Search The PSF database to have easy access to full-text grant abstracts from past PSF-funded research projects 2003 to present. All abstracts are the work of the Principal Investigators and were retrieved from their PSF grant applications. Several different filters may be applied to locate abstracts specific to a particular focus area or PSF funding mechanism.
Tissue engineered 3-D ear cartilage construct
Alan Widgerow MD
2016
University of California, Irvine
PSF/MTF Biologics Allograft Tissue Research Grant
Composite Tissue Allotransplantation, Composite Tissue Allotransplantation
Currently, the treatment of congenital deformity or absence of the ear necessitates the use of the patients' own rib cartilage for reconstruction. The rib is carved into the desired shape and then covered with soft tissue (muscle, skin). This is a laborious process and extremely painful for the young patient. Tissue engineering offers the possibility of using the patient's own cartilage cells to grow cartilage in the laboratory. However these cells are extremely difficult to grow. It has been found that by combining stem cells isolated from fatty tissue from the patient, the growth and function of the cartilage cells increases substantially. In addition a structural framework of non-cellular material derived from fat of non-living donors provides an ideal scaffold on which these cells can grow. This framework can be fabricated into the shape of an ear. By combining the cartilage cells and fat stem cells from the patient and growing these in the presence of the framework described and in media that encourages cartilage formation, we believe we can grow a cartilage framework compatible with the patient.
SPECIFIC AIMS:
1) To establish the ideal ratio of fat stem cells to chondrocytes effective in inducing cartilage formation.
2) To generate cartilage tissue in the laboratory setting by seeding this ADSC-chondrocyte cell mix onto an ear-shaped preformed matrix template derived from decellularized fat.
Cartilage engineering currently involves two major difficulties that we're aiming to overcome:
(1) Yielding a sufficient number of cells with chondrogenic properties (ability to form cartilage). Recent studies have shown that co-culturing chondrocytes with adipose-derived stem cells (ADSCs) aids the production and function of cartilage producing cells. We will define the ideal ratio
(2) Finding a biologically compatible framework in which to place these cells. In their native environment in the body chondrocytes exist within a three-dimensional substance that allows for optimal function. Utilizing a matrix derived from fat would provide such an environment and would be compatible with the seeded cells
Successful generation of cartilage producing cells that gradually replace a pre-designed 3-D biologic framework would provide an ideal technology for cartilage production and engineering.
