The Plastic Surgery Foundation
Log In Donate Now
 

Grants We Funded

Grant applicants for the 2023 cycle requested a total of nearly $4 million dollars. The PSF Study Section Subcommittees of Basic & Translational Research and Clinical Research evaluated nearly 140 grant applications on the following topics:

The PSF awarded research grants totaling over $1 million dollars to support nearly 30 plastic surgery research proposals.

ASPS/PSF leadership is committed to continuing to provide high levels of investigator-initiated research support to ensure that plastic surgeons have the needed research resources to be pioneers and innovators in advancing the practice of medicine.

Research Abstracts

Search The PSF database to have easy access to full-text grant abstracts from past PSF-funded research projects 2003 to present. All abstracts are the work of the Principal Investigators and were retrieved from their PSF grant applications. Several different filters may be applied to locate abstracts specific to a particular focus area or PSF funding mechanism.

Influence of Mechanical Stress on Muenke Syndrome Craniosynostosis

Principal Investigator
Gregory Lakin MD

Year
2008

Institution
University of Pennsylvania

Funding Mechanism
Basic Research Grant

Focus Area
Cranio/Maxillofacial/Head and Neck

Abstract
Muenke syndrome is the most common form of syndromic craniosynostosis, which is caused by a mutation in the fibroblast growth factor receptor 3 (FGFR3). Unexpected from a monogenetic syndromic craniosynostosis, the suture phenotype of Muenke syndrome shows incomplete penetrance and variability; some patients show normal patent sutures, whereas others present with unicoronal or bicoronal craniosynostosis. Notably, the incidence of unicoronal synostosis, which is a characteristic feature of non-syndromic cases and not usually present in a syndromic craniosynostosis, is high in Muenke syndrome. This finding implicates the contribution of a localized non-genetic factor to the etiology of Muenke craniosynostosis. Earlier studies including ours have suggested that mechanical stress in the form of intrauterine constraint may be one of the critical factors involved in non-syndromic (unilateral) craniosynostosis. The purpose of this study is to delineate the potential contribution of mechanical stress to Muenke craniosynostosis and the underlying cellular mechanisms.