The Plastic Surgery Foundation
Log In Donate Now

Grants We Funded

In 2019, The Plastic Surgery Foundation (The PSF) awarded 33 investigator-initiated projects and allocated $891,274 to support the newest, clinically relevant research in plastic surgery.

The American Society of Plastic Surgeons/PSF leadership is committed to continuing to provide high levels of investigator-initiated research support to ensure that plastic surgeons have the needed research resources to be pioneers and innovators in advancing the practice of medicine.

Research Abstracts

Search The PSF database to have easy access to full-text grant abstracts from past PSF-funded research projects 2003 to present. All abstracts are the work of the Principal Investigators and were retrieved from their PSF grant applications. Several different filters may be applied to locate abstracts specific to a particular focus area, or PSF funding mechanism.

Neural Stem Cells Improve Muscle Preservation Following Devervation

Principal Investigator
Tateki Kubo


Massachusetts General Hospital

Funding Mechanism
Basic Research Grant

Focus Area
Peripheral Nerve

Brachial plexus palsies, whether obstetrical or traumatic, are devastating injuries with significant impairment of the affected limb, resulting in functional paralysis, sensory deficits, as well as deep psychological scars. Because of the prolonged delay in nerve regeneration, chronic muscle atrophy and fibrosis continues to be a severe, irreversible impediment to recovery. Current microsurgical techniques have reached their limit in terms of improving the results of brachial plexus reconstruction, we hypothesize that stem cell transplantation may be able to further enhance outcomes by better supporting the biological integrity of the injured muscle and nerve. The requirements for optimal functional recovery after a brachial plexus injury are that (1) the regenerating axons make functional connections with their original muscle cells and (2) the number and size of the motor units in those muscles are restored. To prevent prolonged denervation atrophy and eventual fibrosis, we have previously transplanted embryonic stem (ES) cell derived motor neurons (MNs) into denervated muscles (Craff, et. at., PRS in press). These MNs can provide trophic support to the muscle by forming neo-neuromuscular junctions and upregulating specific growth factors, preserving motor unit integrity for a period of one week. In the current study, we propose to (1) examine the effect of this transplant on the functional outcome after nerve repair and (2) characterize the interaction on a molecular level. To better understand the interaction of the stem cell derived MNs and muscle cells, an in vitro co-culture model of stem cell derived MNs and myotubes will be used to perform a microarray analysis. If this interaction can be better understood, perhaps a method of preserving motor unit health in the denervated state could be achieved, ultimately improving outcomes in brachial plexus reconstruction.